Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708434

RESUMEN

Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear. We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits. While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reduced R2 (0.12-0.49, 0.15-0.42, and 0.25-0.56) and increased NRMSE (3.58-18.24%, 6.27-11.55%, and 7.0-33.12%) compared with nonspatial random cross-validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability. These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications.

2.
Nat Commun ; 14(1): 6074, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783678

RESUMEN

Light-absorbing particles (LAP) deposited on seasonal snowpack can result in snow darkening, earlier snowmelt, and regional climate change. However, their future evolution and contributions to snowpack change relative to global warming remain unclear. Here, using Earth System Model simulations, we project significantly reduced black carbon deposition by 2081-2100, which reduces the December-May average LAP-induced radiative forcing in snow over the Northern Hemisphere from 1.3 Wm-2 during 1995-2014 to 0.65 (SSP126) and 0.49 (SSP585) Wm-2. We quantify separately the contributions of climate change and LAP evolution on future snowpack and demonstrate that projected LAP changes in snow over the Tibetan Plateau will alleviate future snowpack loss due to climate change by 52.1 ± 8.0% and 8.0 ± 1.1% at the end of the century for the two scenarios, mainly due to reduced black carbon contamination. Our findings highlight a cleaner snow future and its benefits for future water supply from snowmelt especially under the sustainable development pathway of SSP126.

3.
Nat Ecol Evol ; 7(11): 1790-1798, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710041

RESUMEN

Vegetation 'greenness' characterized by spectral vegetation indices (VIs) is an integrative measure of vegetation leaf abundance, biochemical properties and pigment composition. Surprisingly, satellite observations reveal that several major VIs over the US Corn Belt are higher than those over the Amazon rainforest, despite the forests having a greater leaf area. This contradicting pattern underscores the pressing need to understand the underlying drivers and their impacts to prevent misinterpretations. Here we show that macroscale shadows cast by complex forest structures result in lower greenness measures compared with those cast by structurally simple and homogeneous crops. The shadow-induced contradictory pattern of VIs is inevitable because most Earth-observing satellites do not view the Earth in the solar direction and thus view shadows due to the sun-sensor geometry. The shadow impacts have important implications for the interpretation of VIs and solar-induced chlorophyll fluorescence as measures of global vegetation changes. For instance, a land-conversion process from forests to crops over the Amazon shows notable increases in VIs despite a decrease in leaf area. Our findings highlight the importance of considering shadow impacts to accurately interpret remotely sensed VIs and solar-induced chlorophyll fluorescence for assessing global vegetation and its changes.


Asunto(s)
Bosques , Bosque Lluvioso , Estaciones del Año , Sesgo , Clorofila
4.
Sci Total Environ ; 871: 161974, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740054

RESUMEN

Understanding the temperature sensitivity (Q10) of soil respiration is critical for benchmarking the potential intensity of regional and global terrestrial soil carbon fluxes-climate feedbacks. Although field observations have demonstrated the strong spatial heterogeneity of Q10, a significant knowledge gap still exists regarding to the factors driving spatial and temporal variabilities of Q10 at regional scales. Therefore, we used a machine learning approach to predict Q10 from 1994 to 2016 with a spatial resolution of 1 km across China from 515 field observations at 5 cm soil depth using climate, soil and vegetation variables. Predicted Q10 varied from 1.54 to 4.17, with an area-weighted average of 2.52. There was no significant temporal trend for Q10 (p = 0.32), but annual vegetation production (indicated by normalized difference vegetation index, NDVI) was positively correlated to it (p < 0.01). Spatially, soil organic carbon (SOC) was the most important driving factor in 62 % of the land area across China, and varied greatly, demonstrating soil controls on the spatial pattern of Q10. These findings highlighted different environmental controls on the spatial and temporal pattern of soil respiration Q10, which should be considered to improve global biogeochemical models used to predict the spatial and temporal patterns of soil carbon fluxes to ongoing climate change.

5.
Glob Chang Biol ; 29(3): 731-746, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36281563

RESUMEN

The spatial dispersion of photoelements within a vegetation canopy, quantified by the clumping index (CI), directly regulates the within-canopy light environment and photosynthesis rate, but is not commonly implemented in terrestrial biosphere models to estimate the ecosystem carbon cycle. A few global CI products have been developed recently with remote sensing measurements, making it possible to examine the global impacts of CI. This study deployed CI in the radiative transfer scheme of the Community Land Model version 5 (CLM5) and used the revised CLM5 to quantitatively evaluate the extent to which CI can affect canopy absorbed radiation and gross primary production (GPP), and for the first time, considering the uncertainty and seasonal variation of CI with multiple remote sensing products. Compared to the results without considering the CI impact, the revised CLM5 estimated that sunlit canopy absorbed up to 9%-15% and 23%-34% less direct and diffuse radiation, respectively, while shaded canopy absorbed 3%-18% more diffuse radiation across different biome types. The CI impacts on canopy light conditions included changes in canopy light absorption, and sunlit-shaded leaf area fraction related to nitrogen distribution and thus the maximum rate of Rubisco carboxylase activity (Vcmax ), which together decreased photosynthesis in sunlit canopy by 5.9-7.2 PgC year-1 while enhanced photosynthesis by 6.9-8.2 PgC year-1 in shaded canopy. With higher light use efficiency of shaded leaves, shaded canopy increased photosynthesis compensated and exceeded the lost photosynthesis in sunlit canopy, resulting in 1.0 ± 0.12 PgC year-1 net increase in GPP. The uncertainty of GPP due to the different input CI datasets was much larger than that caused by CI seasonal variations, and was up to 50% of the magnitude of GPP interannual variations in the tropical regions. This study highlights the necessity of considering the impacts of CI and its uncertainty in terrestrial biosphere models.


Asunto(s)
Ecosistema , Fotosíntesis , Fotosíntesis/fisiología , Clima , Estaciones del Año , Hojas de la Planta/fisiología , Luz
6.
Nat Commun ; 13(1): 1733, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365658

RESUMEN

The terrestrial carbon cycle is a major source of uncertainty in climate projections. Its dominant fluxes, gross primary productivity (GPP), and respiration (in particular soil respiration, RS), are typically estimated from independent satellite-driven models and upscaled in situ measurements, respectively. We combine carbon-cycle flux estimates and partitioning coefficients to show that historical estimates of global GPP and RS are irreconcilable. When we estimate GPP based on RS measurements and some assumptions about RS:GPP ratios, we found the resulted global GPP values (bootstrap mean [Formula: see text] Pg C yr-1) are significantly higher than most GPP estimates reported in the literature ([Formula: see text] Pg C yr-1). Similarly, historical GPP estimates imply a soil respiration flux (RsGPP, bootstrap mean of [Formula: see text] Pg C yr-1) statistically inconsistent with most published RS values ([Formula: see text] Pg C yr-1), although recent, higher, GPP estimates are narrowing this gap. Furthermore, global RS:GPP ratios are inconsistent with spatial averages of this ratio calculated from individual sites as well as CMIP6 model results. This discrepancy has implications for our understanding of carbon turnover times and the terrestrial sensitivity to climate change. Future efforts should reconcile the discrepancies associated with calculations for GPP and Rs to improve estimates of the global carbon budget.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Carbono , Dióxido de Carbono , Respiración
7.
Sci Total Environ ; 798: 149273, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34378544

RESUMEN

Belowground autotrophic respiration (RAsoil) depends on carbohydrates from photosynthesis flowing to roots and rhizospheres, and is one of the most important but least understood components in forest carbon cycling. Carbon allocation plays an important role in forest carbon cycling and reflects forest adaptation to changing environmental conditions. However, carbon allocation to RAsoil has not been fully examined at the global scale. To fill this knowledge gap, we first used a Random Forest algorithm to predict the spatio-temporal patterns of RAsoil from 1981 to 2017 based on the most updated Global Soil Respiration Database (v5) with global environmental variables; calculated carbon allocation from photosynthesis to RAsoil (CAB) as a fraction of gross primary production; and assessed its temporal and spatial patterns in global forest ecosystems. Globally, mean RAsoil from forests was 8.9 ± 0.08 Pg C yr-1 (mean ± standard deviation) from 1981 to 2017 and increased significantly at a rate of 0.006 Pg C yr-2, paralleling broader soil respiration changes and suggesting increasing carbon respired by roots. Mean CAB was 0.243 ± 0.016 and decreased over time. The temporal trend of CAB varied greatly in space, reflecting uneven responses of CAB to environmental changes. Combined with carbon use efficiency, our CAB results offer a completely independent approach to quantify global aboveground autotropic respiration spatially and temporally, and could provide crucial insights into carbon flux partitioning and global carbon cycling under climate change.


Asunto(s)
Carbono , Ecosistema , Ciclo del Carbono , Respiración , Suelo , Árboles
8.
Glob Chang Biol ; 27(20): 5392-5403, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34241937

RESUMEN

Microbially explicit models may improve understanding and projections of carbon dynamics in response to future climate change, but their fidelity in simulating global-scale soil heterotrophic respiration (RH ), a stringent test for soil biogeochemical models, has never been evaluated. We used statistical global RH products, as well as 7821 daily site-scale RH measurements, to evaluate the spatiotemporal performance of one first-order decay model (CASA-CNP) and two microbially explicit biogeochemical models (CORPSE and MIMICS) that were forced by two different input datasets. CORPSE and MIMICS did not provide any measurable performance improvement; instead, the models were highly sensitive to the input data used to drive them. Spatial variability in RH fluxes was generally well simulated except in the northern middle latitudes (~50°N) and arid regions; models captured the seasonal variability of RH well, but showed more divergence in tropic and arctic regions. Our results demonstrate that the next generation of biogeochemical models shows promise but also needs to be improved for realistic spatiotemporal variability of RH . Finally, we emphasize the importance of net primary production, soil moisture, and soil temperature inputs, and that jointly evaluating soil models for their spatial (global scale) and temporal (site scale) performance provides crucial benchmarks for improving biogeochemical models.


Asunto(s)
Ciclo del Carbono , Suelo , Carbono , Procesos Heterotróficos , Respiración
9.
Glob Chang Biol ; 27(10): 2144-2158, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33560585

RESUMEN

Remote sensing of solar-induced fluorescence (SIF) opens a new window for quantifying a key ecological variable, the terrestrial ecosystem gross primary production (GPP), because of the revealed strong SIF-GPP correlation. However, similar to many other remotely sensed metrics, SIF observations suffer from the sun-sensor geometry effects, which may have important impacts on the SIF-GPP relationship but remain poorly understood. Here we used remotely sensed SIF, globally distributed tower GPP data, and a mechanistic model to provide a systematic analysis. Our results reveal that leaf physiology, canopy structure, and sun-sensor geometries all affect the SIF-GPP relationship. In particular, we found that SIF observations in the sun-tracking hotspot direction can be a better proxy of GPP due to the similar responses of light use efficiency and SIF escaping probability in the hotspot direction to the increasing incoming solar radiation. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations. This study also demonstrates the great potentials of current and future spaceborne sun-tracking satellite missions for a significant improvement in measuring and monitoring, at a wide range of spatial and temporal scales, the changes in terrestrial ecosystem GPP in response to anticipated changes in the Earth's environmental conditions.


Asunto(s)
Clorofila , Ecosistema , Clorofila/análisis , Monitoreo del Ambiente , Fluorescencia , Fotosíntesis , Estaciones del Año
10.
Sensors (Basel) ; 19(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067808

RESUMEN

Possible environmental change and ecosystem degradation have received increasing attention since the construction of Three Gorges Reservoir Catchment (TGRC) in China. The advanced Google Earth Engine (GEE) cloud-based platform and the large number of Geosciences and Remote Sensing datasets archived in GEE were used to analyze the land use and land cover change (LULCC) and climate variation in TGRC. GlobeLand30 data were used to evaluate the spatial land dynamics from 2000 to 2010 and Landsat 8 Operational Land Imager (OLI) images were applied for land use in 2015. The interannual variations in the Land Surface Temperature (LST) and seasonally integrated normalized difference vegetation index (SINDVI) were estimated using Moderate Resolution Imaging Spectroradiometer (MODIS) products. The climate factors including air temperature, precipitation and evapotranspiration were investigated based on the data from the Global Land Data Assimilation System (GLDAS). The results indicated that from 2000 to 2015, the cultivated land and grassland decreased by 2.05% and 6.02%, while the forest, wetland, artificial surface, shrub land and waterbody increased by 3.64%, 0.94%, 0.87%, 1.17% and 1.45%, respectively. The SINDVI increased by 3.209 in the period of 2000-2015, while the LST decreased by 0.253 °C from 2001 to 2015. The LST showed an increasing trend primarily in urbanized area, with a decreasing trend mainly in forest area. In particular, Chongqing City had the highest LST during the research period. A marked decrease in SINDVI occurred primarily in urbanized areas. Good vegetation areas were primarily located in the eastern part of the TGRC, such as Wuxi County, Wushan County, and Xingshan County. During the 2000-2015 period, the air temperature, precipitation and evapotranspiration rose by 0.0678 °C/a, 1.0844 mm/a, and 0.4105 mm/a, respectively. The climate change in the TGRC was influenced by LULCC, but the effect was limited. What is more, the climate change was affected by regional climate change in Southwest China. Marked changes in land use have occurred in the TGRC, and they have resulted in changes in the LST and SINDVI. There was a significantly negative relationship between LST and SINDVI in most parts of the TGRC, especially in expanding urban areas and growing forest areas. Our study highlighted the importance of environmental protection, particularly proper management of land use, for sustainable development in the catchment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...